Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Е	В.ДВ.05.02 Теоретическая механика
наименование	дисциплины (модуля) в соответствии с учебным планом
Направление подгото	вки / специальность
22.03.01 M	Гатериаловедение и технологии материалов
Направленность (прос	филь)
22.03.01.	32 Физико-химия материалов и процессов
Форма обучения	очная
Год набора	2021

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили							
K.T	.н., доцент, Т.Г.Калиновская;						
	получесть инишизань фамилия						

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

В системе инженерной подготовки бакалавров по направлению 22.03.01 «Материаловедение и технологии материалов» дисциплина «Теоретическая механика» относится к части, формируемой участниками образовательных отношений соответствии с Федеральным образовательным стандартом высшего образования 22.03.01 «Материаловедение и технологии материалов», утвержденным « 2 » июня 2020 г. № 701

Области профессиональной деятельности выпускников, освоивших программу бакалавриата по направлению 22.03.01 «Материаловедение и технологии материалов», включают:

- разработку, исследование, модификацию и использование (обработку, эксплуатацию и утилизацию) материалов неорганической и органической природы различного назначения, процессы их формирования, формо- и структурообразования, превращения на стадиях получения, обработки и эксплуатации;
- процессы получения материалов, заготовок, полуфабрикатов, деталей и изделий, а также управление их качеством для различных областей техники и технологии (машиностроения и приборостроения, авиационной и ракетно-космической техники, атомной энергетики, твердотельной электроники, наноиндустрии, медицинской техники, спортивной и бытовой техники и др.).

Объекты профессиональной деятельности выпускников включают:

- методы и средства испытаний и диагностики, исследования и контроля качества материалов, пленок и покрытий, полуфабрикатов, заготовок, деталей и изделий, все виды исследовательского, контрольного и испытательного оборудования, аналитической аппаратуры, компьютерное программное обеспечение для обработки результатов и анализа полученных данных, материалов, моделирования поведения оценки прогнозирования И эксплуатационных характеристик;
- основные типы современных конструкционных и функциональных неорганических (металлических и неметаллических) и органических (полимерных и углеродных) материалов, композитов и гибридных материалов, сверхтвердых материалов, интеллектуальных и наноматериалов, пленок и покрытий;
- технологические процессы производства, обработки и модификации материалов и покрытий, деталей и изделий; оборудование, технологическая оснастка и приспособления; системы управления технологическими процессами;
- нормативно-техническая документация и системы сертификации материалов и изделий, технологических процессов их получения и обработки; отчетная документация, записи протоколы хода результатов И экспериментов, документация технике безопасности безопасности ПО жизнедеятельности. Перечень проблем, рассматриваемых дисциплине «Теоретическая механика», с развитием науки непрерывно пополняется, образовывая самостоятельные области. Современная механика решает целый расчету комплекс задач, посвященных проектированию И различных

конструкций, сооружений, механизмов и машин, опирающихся на ряд основных понятий, законов, принципов, методов механики.

Целью изучения Теоретической механики развитие является: инженерного мышления; привитие навыков применения творческого полученных знаний решению инженерных задач, связанных производством; создание представлений об использовании законов и методов механики в определении и оптимизации параметров техники и технологии; формирование у студента общекультурных и профессиональных компетенций.

1.2 Задачи изучения дисциплины

соответствии требованиями ΦΓΟС BO – бакалавриат c направлению 22.03.01 «Материаловедение подготовки И технологии материалов», утвержденным « 2 » июня 2020 г. № 701, изучение дисциплины «Теоретическая механика» направлено на приобретение студентами знаний, умений, навыков на основе которых формируются общепрофессиональные необходимые решения профессиональных компетенции, соответствующих следующим типам профессиональной деятельности выпускников:

- научно-исследовательский;
- технологический
- в областях профессиональной деятельности и сферах профессиональной деятельности выпускников, освоивших программу бакалавриата по профилю 22.03.01.32 «Физико-химия материалов и процессов»

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине									
ПК-10: Способен применять знания об основных типах современных										
материалов, принципах их выбора для заданных условий эксплуатации при										
проектировании процессов получения и обработки материалов										
ПК-10.2: Анализирует										
конструкторскую										
документацию на детали										
машин и приборы, на										
инструменты, подвергаемые										
типовым технологическим										
процессам термической и										
химико-термической										
обработки										
ПК-5: Способен выполнять эксперименты и обработку их результатов по										
созданию, исследованию и выбору материалов, оценке их технологических и										
служебных качеств путем анализа их структуры и свойств, механических,										
коррозионных и других испытаний										

ПК-5.1: Выполняет	записывать условия равновесия тела под действием
комплексные исследования и	различных систем сил;
испытания при изучении	определять направление и величину неизвестных
материалов и изделий,	усилий в уравновешенных нагруженных
включая стандартные и	конструкциях;
сертификационные испытания	методами решения задач статики для составных
	конструкций и систем с учетом сил трения.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

	-	e
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Контактная работа с преподавателем:	1 (36)	
занятия лекционного типа	0,5 (18)	
практические занятия	0,5 (18)	
Самостоятельная работа обучающихся:	1 (36)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа		Занятия семин Семинары и/или Практические		Лабораторные работы и/или		Самостоятельная работа, ак. час.	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Практ Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. C	гатика								
	1. Основные понятия и определения. Аксиомы статики. Связи и их реакции. Проекции сил. Момент силы относительно точки и относительно оси. Пара сил, момент пары. Приведение системы сил к центру. Главный вектор и главный момент системы сил.	2							
	2. Условия равновесия различных систем сил. Равновесие системы тел. Равновесие тела при наличии трения. Трение качения, трение скольжения. Центр тяжести тела.	2							
	3. Условия равновесия плоской системы произвольных сил.			2					
	4. Условия равновесия пространственной системы произвольных сил.			2					
	5. Определение координат центра тяжести сложных конструкций.			2					

	1		1	1	1	
6. Изучение теоретического материала					 4	
7. Расчетно-графические задания, задачи (РГЗ)					4	
2. Кинематика	•					
1. Векторный, координатный и естественный способы задания движения точки. Частные случаи движения точки.	2					
2. Простейшие движения. Поступательное движение тела. Вращение твёрдого тела вокруг неподвижной оси. Понятие МЦС и способы его нахождения. Скорости точек плоской фигуры.	2					
3. Теорема о сложении скоростей. Теорема о сложении ускорений. Ускорение Кориолиса.	2					
4. Кинематика точки.		2				
5. Определение скоростей точек и звеньев плоского механизма.		2				
6. Изучение теоретического материала					2	
7. Расчетно-графические задания, задачи (РГЗ)					2	
3. Общие теоремы динамики						
1. Дифференциальные уравнения движения материальной точки. Две задачи динамики. Свойства внутренних сил и понятие центра масс механической системы. Теорема о движении центра масс механической системы. Количество движения. Импульс сил Теорема об изменении количества движения Закон сохранения количества движения.	2					

2. Осевые моменты инерции тела. Момент количества					
движения. Теорема об изменении момента количества					
движения материальной точки. Теорема об изменении	2				
кинетического момента механической системы.					
Дифференциальное уравнение вращения твёрдого тела.					
3. Работа силы и мощность. Кинетическая энергия.					
Теорема об изменении кинетической энергии механической системы.	2				
4. Применение дифференциального уравнения					
движения точки.		2			
5. Теорема о движении центра масс.		2			
6. Теорема об изменении количества движения.		2			
7. Теорема об изменении кинетической энергии.		2			
8. Изучение теоретического материала				8	
9. Расчетно-графические задания, задачи (РГЗ)				8	
4. Аналитическая механика					
1. Принцип Даламбера для материальной точки и					
механической системы. Главный вектор и главный					
момент сил инерции тела.					
Классификация связей. Возможные перемещения	2				
системы. Идеальные связи. Принцип возможных	_				
перемещений. Обобщённые координаты и обобщённые					
скорости. Обобщённые силы. Общее уравнение					
динамики.					
2. Изучение теоретического материала				 8	
Всего	18	18		36	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Тарг С.М. Краткий курс теоретической механики: учебник для втузов (Москва: Высшая школа).
- 2. Яблонский А. А., Никифорова В. М. Курс теоретической механики. Статика. Кинематика. Динамика: учебник для вузов по техническим специальностям(Москва: КноРус).
- 3. Косолапова С. А., Калиновская Т. Г. Теоретическая механика. Динамика: учебное пособие(Красноярск: ГАЦМиЗ).
- 4. Косолапова С. А., Калиновская Т. Г. Теоретическая механика. Статика и кинематика: учебное пособие(Красноярск: ГАЦМиЗ).
- 5. Шипко Е. М., Фоменко А. И. Теоретическая механика: учебнометодическое пособие для практических занятий и самостоятельных работ [для студентов напр. 221400.62 "Управление качеством"] (Красноярск: СФУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. Для решения поставленных задач при изучении дисциплины «Теоретическая механика» и достижении поставленной цели, в результате которых будущий выпускник будет обладать общекультурными и профессиональными компетенциями, СФУ имеет следующий необходимый комплект лицензионного программного обеспечения.
- 2. 1.Программное обеспечение для работы с электронными документами текстовый редактор Microsoft Word.
- 3. 2.Компьютерная программа, используемая для создания, редактирования и показа презентаций на проекторе или большом экране Microsoft PowerPoint.

4.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. Основным источником информационной справочной системы при изучении дисциплины «Теоретическая механика» является Научная библиотека СФУ — одно из основных подразделений университета, которое обеспечивает качественное информационное сопровождение учебного процесса.

2. Результатами успешного освоения дисциплины, отвечающих комплексом необходимых компетенций, является качественное формирование книжного фонда и электронных образовательных ресурсов Научной библиотеки СФУ, а также развитие и модернизация программно-аппаратного комплекса Электронной библиотеки, которая обеспечивает возможность доступа к обучению из любой точки доступа информационно-телекоммуникационной сети «Интернет» для пользователей всех категорий, в том числе и учащихся по направлению подготовки 22.03.01 «Материаловедение и технологии материалов».

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Мультимедийные средства для лекционных занятий - презентации к лекциям в системе Power Point.

Учебно-наглядные пособия для лекционных занятий — демонстрационные плакаты (25 шт); для практических занятий — макеты и модели механизмов (50 шт).